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Review - Scene Aware Audio for 360° Videos

 Synthesize ambisonic audio for 360° Video 

 Separate direct sound, ERIR, and LRIR: Combine later

 For ERIR,
 Build geometry from 360° video
 Measure room IR response & optimize material absorbance

 Synthesize ERIR with geometric acoustic model

 LRIR is isotropic; reuse room IR response

 For low frequency, use frequency modulation.
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Motivations: Overview



Motivations: Overview

 Naïve Monte Carlo rendering: hard to find eye-to-light path

 Metropolis light transport (MLT): light path sampling 
algorithm

 MLT uses Markov chain Monte Carlo (MCMC), using the 
image contribution of a path as probability distribution for 
estimation.
 Metropolis-Hastings (MH) algorithm is used.
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Motivations: Overview 

 But the image contribution function is unknown, and hard to 
evaluate.
 Especially in complex scenes, such as a scene with participating 

media.

 Solution : Estimate!
 [Pauly et al. 2000] proposed an approximation, but it is biased.

 Need to build an unbiased estimator for MH acceptance 
probability.
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Metropolis 
Light Transport



Background: Key Ideas

 Metropolis light transport (MLT)

 Path integral formulation

 Markov chain Monte Carlo (MCMC)

 Metropolis-Hastings (MH) algorithm 
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Metropolis Light Transport

 Only few paths reach a light 
in Naïve Monte Carlo path 
tracing
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Metropolis Light Transport

 Only few paths reach a light 
in Naïve Monte Carlo path 
tracing

 MLT focuses on successful 
eye-to-light ray

 Make small perturbations to 
build similar paths

 Make & accept new path 
probabilistically
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Metropolis 
Light Transport

More Mathematical



Path Integration Formulation

 MLT integrates over all valid light path.
 Path integration formulation

𝐼𝑗 = න
Ω

𝑓𝑗 ҧ𝑥 𝑊𝑗 𝑑𝜇( ҧ𝑥)

 𝐼𝑗 is j-th pixel luminance, and 𝑊𝑗 is pixel sensitivity. 

 𝑑𝜇 ҧ𝑥 = ς𝑖=0
𝑘 𝑑𝜇(𝑥𝑖)

 𝑑𝜇 𝑥𝑖 = ቊ
𝑑𝐴 𝑥𝑖 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑑𝑉 𝑥𝑖 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑖𝑛 𝑚𝑒𝑑𝑖𝑎

 𝑓𝑗 ҧ𝑥 is the measurement contribution function.
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Path Integration Formulation

 𝑓𝑗 ҧ𝑥 is the measurement contribution function.
 In other words, luminance contribution of path ҧ𝑥 to pixel j.

 Defined as

𝑓𝑗 ҧ𝑥 = 𝐿𝑒 ෑ
𝑖=0

𝑘−1

𝐺 𝑥𝑖 , 𝑥𝑖+1 𝑇(𝑥𝑖 , 𝑥𝑖+1) ෑ
𝑖=1

𝑘−1

𝜌(𝑥𝑖)

 𝐺 is geometrical factor between vertices, 𝜌 is scattering factor.

 𝑇 is the transmittance function along a path edge.

𝑇(𝑥𝑖 , 𝑥𝑖+1) = exp −න
0

𝑑

𝜎 𝑥 + 𝑡𝜔𝑖,𝑖+1 𝑑𝑡
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Path Integration Formulation

 𝑓𝑗 ҧ𝑥 is the measurement contribution function.
 In other words, luminance contribution of path ҧ𝑥 to pixel j.

 Defined as

𝑓𝑗 ҧ𝑥 = 𝐿𝑒 ෑ
𝑖=0

𝑘−1

𝐺 𝑥𝑖 , 𝑥𝑖+1 𝑇(𝑥𝑖 , 𝑥𝑖+1) ෑ
𝑖=1

𝑘−1

𝜌(𝑥𝑖)

 Hard to evaluate; let’s estimate
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Path Integration: Estimation

 Estimate 𝐼𝑗 = Ω׬ 𝑓 ҧ𝑥 𝑊𝑗 𝑑𝜇( ҧ𝑥).

 Let’s sample paths following a probability density function

𝜋 ҧ𝑥 =
𝐿 ҧ𝑥

Ω׬ 𝐿 ҧ𝑥 𝑑𝜇( ҧ𝑥)
 𝐿 ҧ𝑥 is a scalar probability function, in other word, contribution 

function.

 Then estimation of the path integral would be

෡𝐼𝑗 =
𝑍

𝑁
෍

𝑖=1

𝑁 𝑊𝑗𝑓 ҧ𝑥𝑖

𝐿(𝑥)
 𝑍 is normalization factor; can be computed from traditional path tracing.
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Path Integration: Estimation

 But we need to know 𝜋 ҧ𝑥 in advance to sample paths.
 Need to evaluate 𝐿 ҧ𝑥 .

 𝐿 ҧ𝑥 is intractable for a complex scene with participating media.

 Let’s try using Markov chain Monte Carlo method.
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Markov Chain Monte Carlo 

 Estimate 𝐼𝑗 = Ω׬ 𝑓 ҧ𝑥 𝑊𝑗 𝑑𝜇( ҧ𝑥).

 Use Markov chain Monte Carlo to sample light paths.

 Procedure of sampling a new path is only dependent on 
current path (“Markov chain”).

 And probabilistic (“Monte Carlo”).

 More specifically, let’s use Metropolis-Hastings algorithm.

18



Metropolis-Hastings Algorithm

 Starting from an eye-to-light path,

 1. Sample new path ҧ𝑥𝑖+1 with perturbations from current path 
ҧ𝑥𝑖, with probability distribution 𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖). 

 2. Accept with probability

𝑟( ҧ𝑥𝑖 , ҧ𝑥𝑖+1) = 𝑚𝑖𝑛 1,
𝐿( ҧ𝑥𝑖+1)

𝐿( ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)
 𝐿 is the contribution function (again)
 Discard if not accepted, keep if accepted
 Acceptance probability should be exact for exact (unbiased) result

 As we iterate 1 & 2, path distribution converges to 𝜋 ҧ𝑥 .

19



Metropolis-Hastings Algorithm

 2. Accept with probability 𝑟 = 𝑚𝑖𝑛 1,
𝐿( ҧ𝑥𝑖+1)

𝐿( ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)

 𝑞 is given by algorithm, but still we cannot evaluate 𝐿.
 Acceptance probability 𝑟 should be exact for exact (unbiased) 

result!

 𝐿 is intractable for a complex scene with participating media.

 We should build an estimator for 𝐿.
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Previous Works on MLT

 Primary sample space Metropolis light transport (PSSMLT) by 
Kelemen et al. [2002]
 Sample on primary sample space, not path space.
 Depends on path tracing algorithm; limited usability.

 Delta tracking by Raab et al. [2008]
 Unbiased path tracing algorithm for PSSMLT
 Same limitations

 Ray marching by Pauly et al. [2000]
 Evaluate acceptance probability 𝐿 by moving ray tip step-by-step.
 But ray marching is biased; analogous to quadrature method
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Background: Summary

 MLT sample paths from path space, and integrates.

 𝐼𝑗 = Ω׬ 𝑓 ҧ𝑥 𝑊𝑗 𝑑𝜇( ҧ𝑥)

 Use MCMC, specifically MH algorithm.

 MH algorithm relies on the acceptance probability.

 𝑟 = 𝑚𝑖𝑛 1,
𝐿( ҧ𝑥𝑖+1)

𝐿( ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)

 We need unbiased estimator of MH acceptance probability.
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Pseudo-marginal 
Metropolis-Hastings Algorithm



Pseudo-marginal MH: Overview

 MH algorithm (pseudo-marginal version)
 Starting from an eye-to-light path,

 1. Sample new path ҧ𝑥𝑖+1, and 𝑢𝑖+1 ~ 𝑔(𝑢|𝑥)

 1-1. Build ෠𝐿𝑢𝑖+1( ҧ𝑥𝑖+1).

 2. Accept by probability 𝑟 = 𝑚𝑖𝑛 1,
෠𝐿𝑢𝑖+1(

ҧ𝑥𝑖+1)

෠𝐿𝑢𝑖(
ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)

 Iterate 1 & 2.

 This algorithm is unbiased if estimator ෠𝐿𝑢𝑖 ҧ𝑥𝑖 is unbiased!
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Pseudo-marginal MH: Why Does It Work?

 Simple explanation

 Consider auxiliary variable 𝑢~ 𝑔 𝑢 𝑥 , and an estimator ෠𝐿𝑢( ҧ𝑥)

 Let 𝑝 ҧ𝑥, 𝑢 =
𝐿 ҧ𝑥

𝑍
𝑔(𝑢| ҧ𝑥), and 𝜙 ҧ𝑥, 𝑢 =

෠𝐿𝑢 ҧ𝑥

𝑍
𝑔 𝑢 ҧ𝑥 .

 Then ׬𝜙 ҧ𝑥, 𝑢 𝑑𝑢 =
1

𝑍
׬ ෠𝐿𝑢 ҧ𝑥 𝑔 𝑢 ҧ𝑥 𝑑𝑢 = E𝑔 𝑢 ҧ𝑥 ෠𝐿𝑢 ҧ𝑥 .

 If ෠𝐿𝑢 ҧ𝑥 is unbiased, ׬𝜙 ҧ𝑥, 𝑢 𝑑𝑢 = E𝑔 𝑢 ҧ𝑥 ෠𝐿𝑢 ҧ𝑥 = 𝐿 ҧ𝑥 .

 In other words, we can use ෠𝐿𝑢 ҧ𝑥 in place of 𝐿 ҧ𝑥 , while the MH 
algorithm is kept unbiased.
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Pseudo-marginal MH: Why Does It Work?

 Let’s look at acceptance probability.

 The sample space is now (𝑝𝑎𝑡ℎ 𝑠𝑝𝑎𝑐𝑒) ⊗ (𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑢).

 Therefore acceptance probability should be

𝑟( ҧ𝑥𝑖 , ҧ𝑥𝑖+1) = 𝑚𝑖𝑛 1,
෠𝐿𝑢𝑖+1 ҧ𝑥𝑖+1 𝑔(ത𝑢𝑖+1| ҧ𝑥𝑖+1)

෠𝐿𝑢𝑖( ҧ𝑥𝑖)𝑔(ത𝑢𝑖| ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)𝑔(ത𝑢𝑖| ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)𝑔(ത𝑢𝑖+1| ҧ𝑥𝑖+1)

 Sampling 𝑢 is independent from previous states.

 The 𝑔 terms are reduced and what remains is

𝑟( ҧ𝑥𝑖 , ҧ𝑥𝑖+1) = 𝑚𝑖𝑛 1,
෠𝐿𝑢𝑖+1( ҧ𝑥𝑖+1)

෠𝐿𝑢𝑖( ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)
!
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Pseudo-marginal MH: Overview (again)

 MH algorithm (pseudo-marginal version)
 Starting from an eye-to-light path,
 1. Sample new path ҧ𝑥𝑖+1, and 𝑢𝑖+1 ~ 𝑔(𝑢|𝑥)
 1-1. Build ෠𝐿𝑢𝑖+1( ҧ𝑥𝑖+1).

 2. Accept by probability 𝑟 = 𝑚𝑖𝑛 1,
෠𝐿𝑢𝑖+1(

ҧ𝑥𝑖+1)

෠𝐿𝑢𝑖(
ҧ𝑥𝑖)

𝑞( ҧ𝑥𝑖| ҧ𝑥𝑖+1)

𝑞( ҧ𝑥𝑖+1| ҧ𝑥𝑖)

 3. Iterate 1 & 2.

 This algorithm is unbiased if estimate ෠𝐿𝑢𝑖 ҧ𝑥𝑖 is unbiased!

 However, what ෠𝐿𝑢𝑖 ҧ𝑥𝑖 should we use?
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Unbiased Estimator

 Any unbiased estimator can be ෠𝐿𝑢𝑖 ҧ𝑥𝑖 .

 However, it is reasonable to make it similar to 𝑓𝑗 ҧ𝑥 .
 𝑓𝑗 ҧ𝑥 was the measurement contribution function.

𝑓𝑗 ҧ𝑥 = 𝐿𝑒 ς𝑖=0
𝑘−1𝐺 𝑥𝑖 , 𝑥𝑖+1 𝑇(𝑥𝑖 , 𝑥𝑖+1) ς𝑖=1

𝑘−1𝜌(𝑥𝑖)

 Let’s try using below function

෠𝐿𝑢 ҧ𝑥 = 𝐿𝑒 ෑ
𝑖=0

𝑘−1

𝐺 𝑥𝑖 , 𝑥𝑖+1 ෡𝑇𝑖(𝑥𝑖 , 𝑥𝑖+1) ෑ
𝑖=1

𝑘−1

𝜌(𝑥𝑖)
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Unbiased Estimator

 Let’s try using below function

෠𝐿𝑢 ҧ𝑥 = 𝐿𝑒 ෑ
𝑖=0

𝑘−1

𝐺 𝑥𝑖 , 𝑥𝑖+1 ෡𝑇𝑖(𝑥𝑖 , 𝑥𝑖+1) ෑ
𝑖=1

𝑘−1

𝜌(𝑥𝑖)

 The only difference is transmittance term 𝑇, which is now an 
estimator.
 Other terms (G: geometric term, 𝜌: scattering term) are much cheaper 

to evaluate, in scenes with participating media.

 ෡𝑇𝑖 is an unbiased estimator from ratio tracking [Novak et al. 
2014], so ෠𝐿𝑢 ҧ𝑥 is unbiased.

 This function is independent to 𝑢, so there is no need to actually 
sample 𝑢 at all.
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30

Ratio Tracking

Excerpt from [Residual Ratio Tracking for Estimating 
Attenuation in Participating Media. Novak et al. 2014]



Ray Marching vs Ratio Tracking
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Pseudo-marginal MH: Summary

 MLT with MCMC/MH algorithm from [Veach and Guibas 1997]
 For each pixel, find several seed paths using traditional path tracing

 For each seed path, run MH algorithm

 MH algorithm
 Propose path by 𝑞 ҧ𝑥𝑖+1 ҧ𝑥𝑖 from [Pauly et al. 2000], [Jacob 2010]

 Accept path by 𝑟( ҧ𝑥𝑖 , ҧ𝑥𝑖+1)

 Need unbiased estimator
 Build unbiased estimator using unbiased transmittance estimator [this 

paper] by ratio tracking from [Novak et al. 2014]
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Results
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Strengths
 Accurate, and also fast in 

scene with participating 
media

 Can be extended to other 
MLT variants (ERPT in 
example)

Weaknesses
 Only applicable to scenes 

with participating media

 Rendering parameters 
should be carefully set
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